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TIME DOMAIN FREQUENCY STABILITY
CALCULATED FROM THE FREQUENCY DOMAIN

DESCRIPTION:
Use of the SIGINT Software Package to

Calculate Time Domain Frequency Stability From
the Frequency Domain

F. L. Walls John Gary Abbie O’Gallagher

Roland Sweet Linda Sweet

National Institute of Standards and Technology

Boulder, Colorado 80303-3328

We describe the use of SIGINT, a new interactive software package de-

veloped by the National Institute of Standards and Technology, which

facilitates the calculation of time domain frequency stability in terms of

the Allan variance, <7y(r), or modcTy(r) as a function of measuring time

from frequency domain data. Except for the graphic output, the code is

written in standard FORTRAN 77 and runs on AT compatible comput-

ers that have a math co-processor. It also runs on many other systems;

however, calls to an available graphics library will need to be substituted

for those that are included in this version. The program uses either a user

defined function for the input noise or default functions that describe the

noise types commonly found in oscillators, amplifiers, frequency multipli-

ers, frequency dividers, and general signal processing equipment. These

default functions make it simple to analyze the time domain frequency sta-

bility as a function of measuring bandwidth using realistic first-, second-,

or third- order low-pass filters or the simplified infinitely sharp cutoff pa-

rameter fh. The default functions are also set up to examine the effect of

various servo parameters on the performance of a frequency source locked

to a frequency reference.

Key words: Allan variance; frequency lock loop analysis; modified Allan

vaxictnce; pha^e lock loop analysis; spectral density of frequency stability;

time domain frequency stability.





1 Introduction

SIGINT is an interactive software package designed to facilitate the calculation of

time domain frequency stability from data in the frequency domain. Both the AIIeui

variance (two-sample variance), <Ty(7"), and the modified Allan Vciriance, moday(r),

can be calculated as functions of measurement time. Except for the graphic output,

the code is written in standard FORTRAN 77 to run on AT and compatibles that

have a math co-processor (see §4 for details on portability). The actual output of the

software is the square root of the variance. The equations are [l,2,3,4]'

o-v(nro) = SM)
sm*(irfnTo)

{nfriToy

2
2

,and

modcTy (nro) ~rr~2 (”/ sm*{vfnTo) df
U^TT^Tq

[
•'o P

ffh^ sjf)
+ 2 y X] (^ - k)—7^ cos(27r//:ro) sin^(7r/nro) df

° jk=l J

where the measurement time is given by tito with ro being the minimum measurement

time.

The input parameters are expressed in terms of the spectral density of frequency

fiuctuations, Sy{f). Conversion from phase noise to Sy{f) is simply

Sy{f) = ^S,{f),and

sAf) = jMf)-

You may choose to supply your own function Sy(f), or to use the functions which

are built into the package. Use the parameter SELSY (see below) to communicate

this choice to the package. If you use your own function, you must modify the empty

FORTRAN function, SYF(f), within the package. The built in function has the form:

Cif~^ + ^2/“^ + C3 + C4/ + c^p
Sy{f) =

1



The values of the C,- are stored in array C. The filter function K{f) must be chosen

from the following four functions by setting the value of SELK (SELK=0, 1, 2 and 3

respectively)

.

K(f) = 1,

K(f) = + >

The coefficients Ki must be input in the array CK.

M[f) = (1+Mi/(1 + M2/)(1+M3/))'

where any or all of the M, can be 0. These M, are stored in the CM array.

This accommodates the most conunonly encountered types of random noise found in

oscillators, amplifiers, frequency multipliers, frequency synthesizers and general signal

processing equipment. In addition the upper cutoff frequency of the integral can be

treated as infinitely sharp by setting fh equal to the equivalent noise bandwidth of

the time domain configuration simulated by the calculations, or it can be treated

more realistically using the appropriate first-, second-, or third-order low-pass filter

function. This option is implemented by choosing the appropriate constants for Mi,
M2, and M3, and setting fh, to a sufficiently large value that the termination of the

integration at this value does not significantly bias the results.

Servo analysis, such as the examination of the effect of various servo parameters on

the locking of an oscillator to a frequency reference, is facilitated by choosing the

appropriate form of K(f). The noise type assumed for the reference source is white

frequency modulation. An example of this is given in the Appendix. In some special

servo cases, it may be necessary to divide Sy[f) into two segments and run them as

separate cases
,
or you can enter your own form for Sy(f).

The rest of the pcirameters are described in the Input Parameter section, below.
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2 Running the Program

The SIGINT package of routines is set up for interactive use. It is machine independ-

ent with the exceptions noted in the Portability section below. The package will first

display the values of the parameters that define the default case. It then presents a

menu which asks whether you want to run that case, be prompted to input an entire

new set of parameters, or modify directly the current values of some parameters. This

will be referred to later as the “input menu”

.

2.1 Input Modes

In either of the modes described below, values may be entered in either fixed- or

fioating-point format. If fioating-point is used, the decimal point is necessary; for

example, you can enter 2.e-3 but not 2e-3. In some cases, when an integer is being

entered, the decimal point must be omitted. In all cases, the program recovers from

incorrect input, outputs a message attempting to diagnose the problem, and allows

re-entry of the value.

2.1.1 The “prompting” input mode

If you elect to be prompted for the values of the variables, the program will lead you

through a series of questions and answers by which a new case will be defined. An
advantage of this mode is that it is not necessary to know the names of the variables

which the program uses.

2.1.2 The “direct” input mode

K, instead, the “direct” mode of input is chosen, values axe changed by typing one

or more lines containing variable names followed by “=” and the new values of the

variable. Different entries can be separated by a comma or blanks. The last line must

be terminated by a “$” or a For example, you might type the following lines:

NRANGE=2, NLOW = 10

SELSY=1 CK=1.,2.,3. $



This mode will usually be faster than the “prompting” mode.

Notice that if you want to get out of this mode without changing anything, you can

simply type a “$” or a .

When you finish with either mode of input, the current set of parameters will be

displayed and you will be returned to the input menu. At this point you can either

run the Ccise or further modify the parameters by again entering one of the input

modes. You can continue to revise and examine the parameters until you are satisfied

with them and then run the case.

2.2 Output Modes

When the integration is completed, you will be presented with another menu which

will be called the “output menu”. This menu asks whether to print results, plot them,

compute another integral, or quit.

As the program computes an integral, it saves the defining parameters and the results

in internal data structures. The results are in the form of a table of values of r

(r = titq
)
and corresponding values of the square root of the integral(variance). So

eaeh time you come to the output menu, the results of all of the cases you have done

during the run are available to be printed and/or plotted.

2.2.1 Printing

On AT compatible computers you can either print to the screen or to your printer

(see Portability section for behavior on other systems)

.

2.2.2 Plotting

Plotting will work only on AT compatible computers. On each frame it is possible to

plot either one or several cases. A hard copy of the plot Ccin be obtained if you have

a memory-resident utility that allows you to use the print screen key to transfer the

graphics screen image to your printer. The plot package will plot directly to certain

printers. Examples of the plots are found in Figures 1-7. Additional details can be
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obtained by contacting the Applied and Computational Mathematics Division, NIST,

325 Broadway, Boulder, Colorado 80303-3328. Attention: Abbie O’Gallagher.

2.2.3 Quitting and Saving Results

When you choose to quit, you will be asked if you want to save the results. If you

say yes, the defining parameters, along with the results of each of the cases you have

done during that nm, will be saved in a disk file called SAVOUT on the default disk

and directory.

2.3 Input Parameters

The following is a list of the input variables that must be set in order to compute

an integral. The integral can be computed for a single value of r (r = nro), or for a

sequence of values of r. In the latter case, the integral can be plotted as a function

of T.

INTGRAL: Integer which selects the integral to be computed. INTGRAL = 1 for

the a integral; INTGRAL = 2 for the mod<7 integral. The default value

is INTGRAL = 1.

NRANGE: Integer which determines the range of values of the parameter n for

which the integral is computed. Set NRANGE = 1 to compute the

integral for a single value of n (n = NLOW). Set NRANGE == 2 to

compute the integral for the sequence of values obtained by starting

with NLOW and doubling the current value to obtain the next one until

reaching the last such value not exceeding NHIGH. Thus if NRANGE
= 2, NLOW = 1, and NHIGH = 20, then the integral will be computed

for n=(l, 2, 4, 8, 16). For NRANGE = 3, the integral will be evaluated

by decades with five points per decade. Thus if NRANGE = 3, NLOW
= 1, NHIGH 100, then the evaluation will be done for n =

(1, 2, 3,

5, 7, 10, 20, 30, 50, 70, 100). The default value is NRANGE = 3.

NLOW: The lower limit of the range of values of n for which the integral is

computed (see the discussion of NRANGE). The default value is NLOW
= 1 .
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NHIGH: The upper limit of the range of values of n for which the integral is

computed. The default value is NHIGH = 1000.

FH: The upper limit of the integral, fh. The default value is FH = 3.

SELSY: Integer to select the function Sy[f). If SELSY = 1, you must supply

a double-precision function named SYF(f), with double-precision argu-

ment f. (You must replace the empty FORTRAN function SYF(f) that

is provided.) If SELSY = 2, then you must select one of four built-in

functions by giving values of the input parameter SELK, and the arrays

C, CK, and CM as given in the discussion of Sy(f) above. The default

value of SELSY is SELSY = 2.

SELK: Integer parameter which selects the function K(f). See discussion above.

The default value is SELK = 3.

C: A double-precision array of dimension C(6) containing the coefficients

of the function Sy{f). The default values axe C = 2.e-24, 0, 0, 0, 0, 0.

CK: A double-precision array of dimension CK(3) containing the coefficients

of the function K(f). The default values axe CK = 10, 40, 100.

CM: A double-precision array of dimension CM(3) containing the coefficients

of the function M(f). The default values axe CM = 0 ,0, 0.

TAUO: A double-precision scalar parameter of the integral. The default value

is TAUO = 1.

2.4 Internal Constants

It is not necessciry to be aware of the constants described in this section unless you

want to alter the behavior of the code. In that case it may be necessary to change the

values to which these constants are set. This may be done by editing the FORTRAN
to change the assignment statements that set these values. Recompiling will also be

necessary. The pertinent assignment statements can be found at the beginning of the

main program.
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EPSREL: The relative error tolerance for QUADPACK routines. It is set at

2 * 10"^.

EPSTRN: The truncation error tolerance used by the MDSIGY routine to deter-

mine, for a given value of the variable of integration, whether the esti-

mate of the integral over the remainder of the interval is small enough

to indicate that the remainder can be ignored. See discussion of the

numerical method, below. EPSTRN is set at 2 * 10“^.

NCYCLE: The number of cycles of the numerator of Sy{f) on each side of a sin-

gularity which are evaluated by the non-oscillatory quadrature routine

(see section 3). NCYCLE is set to 8.

IDB: Switch to control debug printout from the routines SIGMAY and MD-
SIGY. It is set to 0. Set it to 1 to get debug printing.

3 The Numerical Method

The sigma integral.

(^y{nro) = 2
sin^(7r/nro)

(7r/nro)2

I
3

1

can be treated as an oscillatory integral except in the neighborhood of the origin.

Therefore, the integral is computed by using one approximation in the neighborhood

of the origin and a second method away from the origin; that is,

where

h

h

Piif)

m)

•'o

/ ^2 (/) sin^ (vfriTo) df,
a

Sy{f)

Sy{f)

sin^(7TfriTo)

(TrfriToy

(7r/nro)2’

,and
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with a chosen so that the first integral is tciken over NCYCLE/2 cycles of the sine

function, provided r = uto is large enough. Otherwise it is taken over 2/3 of the

interval fh. That is, a = mimmum(2/fc/3, NCYCLE/r). E the function Fi grows

more slowly than f~^ at / = 0, then the first integral exists. We assume that Sy(f)

grows no more rapidly than /“^, and thus the integrand in this first integral has a

removable singularity and can be computed using a general purpose quadrature rou-

tine from the subroutine library. We use the DQAGE routine from the QUADPACK
[7] library.

The second integral is oscillatory. It can be transformed into a canonical form by use

of the trigonometric substitution,

3 1 1
sin'^(7r/r) = cos(2ttfr) + - cos(47r/r),

8 2 8

and can therefore be written as the sum of three integrals,

h = hi + h2 + hz‘

Since a is chosen large enough to avoid the singularity at the origin, the first of

these three integrals can be computed with the standard quadrature routine DQAGE.
The remaining two integrals are oscillatory and are therefore computed using the

DQAWOE routine, also from QUADPACK. DQAWOE is designed for integrals of

the form / f{x) sin(o;x)dr or / f(x) cos(ux)dx ,where u can be very large. These

sigma integrals may have values of nro which easily exceed 10^ (here uto corresponds

to cj).

In all cases we ask that the QUADPACK routines compute the integrals with a

relative error less than 2 * 10“^. This may be wasteful, since one of these integrals

may dominate the remainder, however we could not be certain of the dominance in

all cases.

Extensive tests of the numerical calculation for CTy(r) have been performed for all the

common noise types, Ci — C5 [1,2,3]. The results agree with the asymptotic form

(27r/^r ':$> 1) to better than 11% as long as 2nfhT is larger than 6.3 and 0.1% for

27tfhT > 62.8. We believe that the numerical technique yields more accurate results

since the analytical calcuations are valid only for 2'KfhT ^ 1. The asymptotic forms

are considered in more detail in Figures 1-7 and Tables I and II.
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The mod sigma integral,

moday(nro) = -rV? (
df

U^TT^Tq
(

•'O P

+ 2 (^ “ cos{2nfkTo) sm^{7rfnro) df
° jb=i J 11

is much more difficult to approximate because the sum over k includes many terms

when n is large. The sum over k is eliminated by using the following identity,

MO, ” Ism^^
Z(n-fc)cos0fc = -•

; + 7-5-2T-
k=i 2 2 sm j

This identity is derived by summing a geometric series composed of complex expone-

tials. Since the real part of a complex exponential is the cosine term, this series

reduces to the expression on the left, above. This can be summed explicitly, yielding

the final formula. Application of this identity to the original integral leads to the

following form of the integral:

modcTy(nro)
2 ff>‘ Sy(f) sin^(7rron/) 1

“

n*n^T^ ^0 P sm^{iTTof)

With this simplification mod<jy(nro) can be broken up and evaluated in a way that

is analogous to that described above for the <7y(nro) integral. However mod(7y(nro)

presents the additional problem that it has a singularity for each integral value of

Tof instead of just one singularity at / = 0. It is therefore necessary to break up the

interval of integration into p * tq subintervals and sum the values of the integral over

each of these smaller intervals. If is large, this is a large number of subintervals. But

in many cases, the later subintervals contribute negligibly to the value of the integral.

For this reason an estimate of the error produced by neglecting these contributions

is made every few subintervals. If the ratio of this error to the computed value of the

integral up to that point is small (less than EPSTRN), then no further calculation is

done and the value returned by the program as modcTy (nro) is the square root of the

sum of the integrations done over the subintervals up to that point.

Extensive tests of the numerical calcuation for mod(7y(r) have been carried out for

the common types of noise (Ci — Cs) and compared to the results of [3] ,
obtained

9



analytically and the results of [4] obtained by computer simulated noise. This has been

done by comparing R(n) the ratio of moda^ (r) to as a function of the number of

samples averaged together for mod<7y(r), obtained by the three methods. The results

obtained using SIGINT for R(n) are shown in figure 1 and table 1. This agrees exactly

with the results of both [3] and [4] for a = —2, a = 0 and a = 2 (ignoring the obvious

typographical errors). The results for a = 1 agree for 27rfhTo = 10'* - the only case

addressed by [3]. Also shown are our results for a = 1 and 27rfhTo = 3, 10, 100. Our

results differ considerably from [3] for a = — 1, but agree with the asymptotic value

of [4]. Since we have obtained excellent agreement for so many other cases using the

same numerical code, we believe that the results presented in figure 1 cuid table 1 are

more accurate than the earlier work.

4 Portability

The SIGINT code is standard FORTRAN 77 and is portable with the following ex-

ceptions:

• The graphics library used is David Kahaner’s* GRAPH.LIB, which runs only

on PC compatible computers with one of the following display adapters:

— IBM Color Graphics Adapter^

— IBM Enhanced Graphics Adapter

— IBM Professional Graphics Adapter in CGA emulation mode

— IBM PS/2 Video Gate Array in EGA emulation mode

— Hercules

- Video-7

When moving the code to another system, it will be necessary either to “com-

ment out” the calls to the plot routines and run the code without graphic output

^Scientific Computing Division, National Institute of Standards and Technology, Gaithersburg,

MD 20899

^Identifacation of some commercial materials has been necessary in this report. In no case does

such identification imply recommendation or endorsement by the National Institute of Standards and

Technology, nor does it imply that the materials are necessarily the best available for the purpose.
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or to change those graphics calls, all of which are in SUBROUTINE PLOT, to

call an available graphics library.

• On any system, numerical results can be printed on the screen but if the option

of using the printer is chosen on a system other than an AT compatible, the

results will instead be written to a file called “PRN”. (“PRN” is the name DOS
uses for the printer.) Results will not accumulate in this file. Only the last

printing will be there when the program terminates.

• The code is written in double precision, which may be unnecessary on machines

with larger word sizes.

• On UNIX systems, carriage control characters may appear on the screen instead

of affecting the output as intended.

• The VAX reports underfiow conditions but terminates normally and the results

are imaffected.

The entire code has been run extensively on AT compatible computers using RM/FOR-
TRAN. In addition, except for the graphic output, it has been tested on a VAX
11/785, SUN 3/180, MASSCOMP MC5500-PEP and Cyber 840 and 855. It is ex-

pected that it will run on most other systems. If problems are encountered in moving

it to another system, an attempt will be made, subject to the availability of resources,

to overcome them. For such assistance, please contact the Applied and Computa-

tional Mathematics Division, NIST, 325 Broadway, Boulder, Colorado 80303-3328.

Attention: Abbie O’Gallagher.
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Figure 1. cry(r) versus r for the five common power-law noise types in

the limit that 27rf^ is large compared to 1 and an infinitely sharp
filter is used. Curve a is for random-walk frequency modulation, Sy(f)
= h_2 f~^. Curve b is for flicker frequency modulation, Sy(f) = h_i f"

Curve c is for white frequency modulation, Sy(f) = hQ. Curve d is

for flicker phase modulation, Sy(f) = h]^ f. Curve e is for white phase
modulation, Sy(f) = h2 f^.
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Figure 3. Oy{r) for flicker phase frequency modulation (a = 1) as a

function of measurement time, r, and measurement bandwidth, f]^. Curves

a, b, and c have an infinitely sharp filter with width, fj^ = 16 Hz, f^

= 0.016 Hz, fj^ = 0.0016 Hz respectively. Curves d and e have a single

pole filter width, f^ = 0.016 Hz and
f^ = 0.0016 respectively.
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Figure 4. Oy{r) for white frequency modulation (a =0) as a function

of measurement time, r, and measurement bandwidth, f^. Curves a, b,

and c have an infinitely sharp filter with width, f^ = 16 Hz, fh =

0.016 Hz, fh = 0.0016 Hz respectively. Curves d and e have a single

pole filter width, fh = 0.016 Hz and fh = 0.0016 respectively.
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Figure 5. Oy(r) for flicker frequency modulation (a = -1) as a
function of measurement time, r, and measurement bandwidth, f]-^. Curves
a, b, and c have an infinitely sharp filter with width, f^ = 16 Hz, f^
= 0.016 Hz, fh = 0.0016 Hz respectively. Curves d and e have a single
pole filter width, fj^ = 0.016 Hz and f^ = 0.0016 respectively.
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Figure 6. Oy{r) for random walk frequency modulation (a = -2) as a

function of measurement time and measurement bandwidth, fj-j, for tt.

Curves a, b, and c have an infinitely sharp filter with width, f]-j = 16

Hz, f^ = 0.016 Hz, f^ = 0.0016 Hz respectively. Curves d and e have a

single pole filter width, f^ = 0.016 Hz and fj^ = 0.0016 respectively.
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R(n)

n, Number of Samples Averaged

Figure 7. Ratio of mod(7y(r)^ to ay(r)^ as a function of n, the number

of points averaged to obtain Moday(r) . The measurement time r = nrQ,

where tq is the minimum data interval.
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TABLE I. Ratio of modCTy(r) to 0^(7) vs n, for common power- law noise types
Sy(f) = h^f®. n is the number of time or phase samples averaged to obtain
moday(r = nrg ) where Tq is the minimum sample time, and is 2n times the
measurement bandwidth fj^ .

modo„(x)
R(n)= ^ ^ = ^^0

o;(t)

n a = -2 a = -

1

a = 0
= 3

a
= 10

= +1
= 100 0

It 0

a = +2

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 0.859 0.738 0.616 0.568 0.543 0.525 0.504 0.500

3 0.840 0.701 0.551 0.481 0.418 0.384 0.355 0.330

4 0.831 0.681 0.530 0.405 0.359 0.317 0.284 0.250

5 0.830 0.684 0.517 0.386 0.324 0.279 0.241 0.200

6 0.828 0.681 0.514 0.349 0.301 0.251 0.214 0.167

7 0.827 0.679 0.507 0.343 0.283 0.235 0.195 0.143

8 0.827 0.678 0.506 0.319 0.271 0.219 0.180 0.125

10 0.826 0.677 0.504 0.299 0.253 0.203 0.160 0.100

14 0.826 0.675 0.502 0.274 0.230 0.179 0.137 0.0714

20 0.825 0.675 0.501 0.253 0.210 0.163 0.119 0.0500

30 0.825 0.675 0.500 0.233 0.194 0.148 0.106 0.0333

50 0.825 0.675 0.500 0.210 0.176 0.134 0.0938 0.0200

100 0.825 0.675 0.500 0.186 0.159 0.121 0.0837 0.0100

LiBic 0.825 0.675 0.500 r
3.37 1 1/n

1.04 +3 T

j

20



TABLE II. Asymptotic forms of crj(r) for various power-iaw noise types and two

filter types. Notei (^/27t = fj^ is tlie measurement system bandwidth often

called the high-frequency cutoff. In = loge.

Nane of Noise a s,(f) o^ir)

Whr»l
Infinite Sharp

Filter

Whr»l
Single Pole

Filter

i^r«i
Infinite Sharp

Filter

WhT«l
Single Pole

Filter

White Phase 2

3fhh2
K

3fhh2
2/5^2 fi,5r2h2

fh"h2

(2jr)2r2 (2>r)2r2 2r

Flicker Phase 1

(1.038 + 31n(whT))hi (31n(whT ))hi hw^fi^^r^hi 2fi,2(ln(2))hi

hi t

(2»r)2r2 (2rr)2 r2

White Frequency 0
ho

ho
2r

ho

2r

2/3jr2fj^2^h(j

Flicker Frequency -1 h.if-' 2(ln(2))h.i 2(ln(2))h ^2f,2r2h.i 8jt^ r^h.
1

Random-Walk
Frequency

-2
2n^ rh .

2

H -F" ^
rh-2 2n^ fj, T^h. 2 2jt^ fj, r^h. 2

2 ^

3 3

i
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Appendix

Stability of Frequency Locked Loops
Fred L. Walls

National Institute of Standards and Technology
Boulder, Colorado 80303

1 Introduction

Passive frequency standards are characterized by the use of a reference
resonance to stabilize the frequency of an external probe oscillator. A
common configuration is shown in Fig. 1 [1-6]. The probe oscillator
generally has phase modulation imposed on the carrier in order to

interrogate the resonance with a minimum of offset. The resulting
amplitude modulation is demodulated to yield an error curve that is

essentially the derivative of the resonance. Although Fig. 1 shows a

transmission system, similar schemes are sometimes possible in reflection
[5]. The error signal from the demodulator is used to steer the probe
signal toward the center of the resonance line [1-9]. For analysis times
longer than one period of the modulation cycle, and under the condition
that the probe oscillator wanders less than the half width of the error
curve in the loop attack time, we can treat this curve as approximately
static[l-4]. Near line center the loop error voltage at the

synchronous detector, is approximately = k ( 1^0
° - where k is

the slope of the error curve, is the resonance frequency of the
reference, and is the open loop frequency of the probe oscillator and

is the detector noise. If we now close the loop with gain G(f), it

can be shown that the spectral density of fractional frequency
fluctuations Sy(f) for the probe source becomes

MODULATION
REF

Figure 1 . Generalized block diagram of a probe source locked to a

reference resonance.

Contribution of the U.S. Government; not subject to copyright.
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+ s/(f) ( 1 )Sy(f)

G(f)
^
2

L RC 1

lG(f)+lJ G2(f) J

where Sy° (f) is the open-loop spectral density of fractional frequency
fluctuations of the probe source, Sy^(f) is that of the reference, and
Sy^(f) is that of the detector and interrogation noise referred to the
demodulator output. Cutler [10] has pointed out that noise in the local
oscillator at the 2nd harmonic of the modulation frequency, which is

usually ignored, causes a time varying frequency offset that is

undistinguishabie from reference noise. This sets the lower limit to the

interrogation noise and often sets the lower limit of the noise
performance of the local oscillator necessary not to degrade the overall
performance. The magnitude of the 2nd harmonic noise modulation in

radians/s is estimated in appendix B of [1] to be kg = 27rr/( Sy (^/tt) )
^ ^ ^

,

where n/(27r) is the modulation frequency. This leads to an interrogation
noise term which is of order [1,4,10] Sy^(f) = 1/(167t) Sy° (fi/Tr) . For
large values of G(f)

,
Sy(f) of the probe source reflects that of the

reference plus the added noise of the detection system [1-6].

The primary goal of this paper is to investigate the effect of various
realistic forms of G(f) on the spectral density of frequency and
fractional- frequency stability. It will be shown that mod <Jy(r) [11,12]
is better suited than the traditional two-sample or Allan Variance
[8], for evaluating the locked performance when the frequency stability
of the reference is much greater than that of the local oscillator
[7,8,11,12].

2 . The Effect of Different Forms of Servo Gain

Figure 2 shows the effect of locking a probe source with Sy°(f) = 2 x

10"^®/f^ + 1 X 10“ ^^/f + 2 X 10“ ^°f^ (which roughly corresponds to that
of a low-noise 5 MHz quartz oscillator) to a reference resonance with
Sy^(f) of 2 X 10“^° and gy^(f) = 5.6 x 10“^®. Sy^(f) is the estimated
interrogation noise for a modulation frequency of 47 Hz [1,4,10]. Curves
A, B, and C show the effect of using a first-, second-, or third- order
loop each having a loop bandwidth of approximately 0.1 Hz or an attack
time of 1.6 s[l]. The solid Curves A, B, and C of Fig. 3 show o^{ t )

calculated for curves A, B, and C from Fig. 2 with a noise bandwidth of 3

Hz, The improvement in stability of the local oscillator due to the
servo scales roughly as r/r^ where is the attack time and r is the
measurement time. Considerable insight into the effect of various gain
stages on the frequency stability can be obtained by considering
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J A<l>^ / ( 2 )
1/

as a measure of fractional time or frequency stability in the region of
measurement times from about 1 to 10^ s where the effects of low
frequency divergence can often be ignored [7,8]. The squared phase
deviation of the zero crossings is given approximately by [8]

s'" (Sy (f))/f" df
1/ 27t^ r

(3)

Figure 2. Sy(f) of the

probe source locked a

reference resonance. For A
G(f) = (l/(10f)

,
for B G(f)

= (l/(10f))(l + l/(40f)),
for C G(f) = l/(10f)) (1 +

l/(40f))(l + l/(160f)).
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Figure 3. The solid
curves show (7y(r) and the
dashed curves show mod

versus r for curves
A, B, and C of Fig. 2.

The a, b, and c points
show estimations of mod
ay(r) using Eqs . 2 and 3

with fjj = fho • Also shown
is CTy° (r) and Oy^ (r)

.

for a sample time r and noise bandwidth fj^ . For a noise spectrum which
varies as Sy(f)= K'f" where n > 2, the integral is dominated by the high
frequency bandwidth even for very long measurement times . The
fractional- frequency (or time) stability given by Eq . 2 decreases as

just as does Oy{r)

,

due to the increase in measurement time and not to a

decrease in the value of . The integral in Eq. 3 can be integrated by
parts for the various segments of Sy(f). This makes it easier to

evaluate and optimize the performance of the overall system than by using
a process based on

The contribution of the high frequency noise can be greatly reduced by
phase averaging the data points [9]. The data at measurement time r = nr^

(where is the data interval) is obtained by averaging the n adjacent
phase points. This is equivalent to using mod Oy(r) to analyze the

data [ 9 , 11 , 12
]

. The standard expression for mod <7y(r) contains an
enormous number of terms and is quite laborious to compute [ 11- 12 ] . It

[13-15] has been pointed out that mod ay(r) can be reduced to

mod ay ( r

)

2

4 2 2

Sy (f)sin® (Trr^nf)

df.

f^ sin^ (ttTq f

)

(4)

which is much more manageable. Nevertheless it still requires numerical
calculations to determine which segment of the phase noise dominates the
integral. We can estimate mod ay(r) from Eqs. 2 and 3 by using fj^ =

f^jo/n, where fj^^ is the hardware bandwidth of the measurement system and
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T = nr^ is the measurement time. The integral for in Eq. 3 is now
substantially reduced for measurement times large enough that fj^^/n is

less than the bandwidth of the servo system. This is in contrast to the
original calculation for Eq. 3 where the integral must always increase
with T . This integral can also be divided into parts and integrated
analytically. The fractional frequency stability computed for A, B, and
C of Fig. 2 using mod o^{t) are shown as the dashed curves A'

,
B'

,
and C'

of Fig. 3. The points labeled a, b, c show the results of estimating mod
ay(r) using Eqs . 2 and 3 with f^^ = fj^^/n. The agreement with the dashed
curves is very good. The calculations for and mod Oy{r) are
virtually independent of using an upper cutoff frequency for the
integration or a simple low pass filter of the same bandwidth. The use
of mod cTy(r) reduces by a factor of about 100 the time necessary to reach
the performance of the reference plus the interrogation noise, which in
this case limits the performance for times longer than 100 s.

3. Discussion

The primary utility of these results is the insight into the origin of
the major contributions to Oy{r) and mod £Jy(r) as a function of the servo
gain and the analysis bandwidth, and the effect of narrowing the
bandwidth with longer measurement times. The specific examples
illustrate that it is generally necessary to use a second-order loop to

lock the probe source to the reference resonance, but that a third-order
loop offers little additional improvement when drift in the probe is not
serious. In addition, if the reference resonance is substantially more
stable than the probe source, it can be very useful to use mod Oy{r) to

analyze the output of the probe source. We have introduced a simple
measure of frequency stability that is easy to use for optimizing the

servo and the analysis system. With the techniques introduced here it is

possible to realize fractional frequency stabilities and time prediction
of the local oscillator which are characteristic of the reference
resonance in a way that is orders of magnitude faster than those using
more traditional approaches.

4. Acknowledgements

It is a pleasure to acknowledge the many enlightening discussions on this

topic with L. S. Cutler, A. DeMarchi
,

R. E. Drullinger, and D. W. Allan.

M. Cline made some of the initial calculations, A. 0' Gallagher, J. Gary,

and R. Sweet wrote the routines to calculate cTy(r) and mod £7y(r) from the

specified phase noise.

26



5.

References

1. F. L. Walls and S. R. Stein, NBS Tech Note 692, U.S. Government
Printing Office, Washington, D.C., SD Cat. # 01346:692

2. C. Audoin and V. Candelier, IEEE Trans, on UFFC, UFFC-34 . 573-581

(1987)
3. A. DeMarchi, G. D. Rovera, and A. Premoli, IEEE Trans, on UFFC,

UFFC-34 . 582-591 (1987)
4. F. W. Walls, IEEE Trans, on UFFC, UFFC-34 . 592-597 (1987)
5. S. R. Stein, Proc . of 29th Symposium on Frequency Control, 321-327

(1975)
6. J. Vanier, M. Tetu, and L. G. Berniez

,
IEEE Trans, on I&M IM-28 .

188-193
7. D. W. Allan, Proc. IEEE, 221-230 (1966)
8. J. A. Barnes et al., IEEE Trans. I&M, IM-20 . 120 (1971)
9. J. J. Snyder, Appl. Opt., 1^, 1223-1225 (1980)
10. L. S. Cutler, Hewlett Packard, Private communication, (Sept. 1988).
11. D. W. Allan and J. A. Barnes, Proc. 35th Annu. Symp. Frequency

Control, 470-474 (1981)
12. P. Lesage and T. Ayi

,
IEEE Trans. I&M, IM-33 . 332-336 (1984)

13. J. Gary, National Bureau of Standards, Boulder, CO, private
communication

.

14. V.P. Kroupa and L. Sojar, CPEM 1984 Digest (Delft, the Netherlands.)
15. P. Tremblay, These Universite Laval, Quebec 1985.

27



NIST-1 14A

(REV. 3-89)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1 , PUBUCATION OR REPORT NUMBER

NISTIR 89-3916
2. PERFORMING ORGANIZATION REPORT NUN

BIBLIOGRAPHIC DATASHEET
3. PUBUCATION DATE

September 1989

TITLE AND SUBTITLE

TIME DOMAIN FREQUENCY STABILITY CALCULATED FROM THE FREQUENCY DOMAIN DESCRIPTION:
Use of the SIGINT Software Package to Calculate Time Domain Frequency Stability From
the Frequency Domain

5. AUTHOR(S)

F.L. Walls, John Gary, Abbie 0* Gallagher, Roland Sweet, and Linda Sweet

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
c»m«R*«mci=M»«©8©9: Boulder, Colorado 80303-3328

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPH1
LITERATURE SURVEY, MENTION IT HERE.) ,,, , ,, r oTi-iTXTrr< • .l .l- i jWe describe the use of SIGLN 1 ,

a new interactive software package de-

veloped by the National Institute of Standards and Technology, which

facilitates the calculation of time domain frequency stability in terms of

the Allan variance, crj(7-), or modcrj(r) as a function of measuring time

from frequency domain data. Except for the graphic output, the code is

written in standard FORTRAN 77 and runs on AT compatible comput-

ers that have a math co-processor. It also runs on many other systems;

however, calls to an available graphics library will need to be substituted

for those that are included in this version. The program uses either a user

defined function for the input noise or default functions that describe the

noise types commonly found in oscillators, cimplifiers, frequency multipli-

ers, frequency dividers, and general signal processing equipment. These

default functions make it simple to analyze the time domain frequency sta-

bility as a function of measuring bandwidth using realistic first-, second-,

or third- order low-pass filters or the simplified infinitely sharp cutoff pa-

rameter fh- The default functions are also set up to examine the effect of

various servo parameters on the performance of a frequency source locked

to a frequency reference.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Allan variance; frequency lock loop analysis; modified Allan variance; phase lock loop

analysis; spectral density of frequency stability; time domain frequency stability

13. AVAILABILITY

UNLIMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

14. NUMBER OF PRINTED PAGE£:

36

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

ELECTRONIC FORM
U.S. GOVERNMENT PRINTING OFFICE: 1990-775-286/25138






		Superintendent of Documents
	2016-11-22T22:12:25-0500
	US GPO, Washington, DC 20401
	Superintendent of Documents
	GPO attests that this document has not been altered since it was disseminated by GPO




